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ABSTRACT

For many languages that use non-Roman based indigenous
scripts (e.g., Arabic, Greek and Indic languages) one can of-
ten find a large amount of user generated transliterated con-
tent on the Web in the Roman script. Such content creates
a monolingual or multi-lingual space with more than one
script which we refer to as the Mixed-Script space. IR in the
mixed-script space is challenging because queries written in
either the native or the Roman script need to be matched
to the documents written in both the scripts. Moreover,
transliterated content features extensive spelling variations.
In this paper, we formally introduce the concept of Mixed-
Script IR, and through analysis of the query logs of Bing
search engine, estimate the prevalence and thereby establish
the importance of this problem. We also give a principled so-
lution to handle the mixed-script term matching and spelling
variation where the terms across the scripts are modelled
jointly in a deep-learning architecture and can be compared
in a low-dimensional abstract space. We present an exten-
sive empirical analysis of the proposed method along with
the evaluation results in an ad-hoc retrieval setting of mixed-
script IR where the proposed method achieves significantly
better results (12% increase in MRR and 29% increase in
MAP) compared to other state-of-the-art baselines.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval
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1. INTRODUCTION
A large number of languages, including Arabic, Russian,

and most of the South and South East Asian languages, are
written using indigenous scripts. However, due to various
socio-cultural and technological reasons, often the websites
and the user generated content in these languages, such as
tweets and blogs, are written using Roman script [1]. Such
content creates a monolingual or multi-lingual space with
more than one scripts which we refer to as the Mixed-Script
space. Information retrieval in the mixed-script space, which
can be termed as Mixed-Script IR (MSIR), is challenging
because queries written in either the native or the Roman
scripts need to be matched to the documents written in both
the scripts.

The process of phonetically representing the words of a
language in a non-native script is called transliteration [19].
Transliteration, especially into Roman script, is used abun-
dantly on the Web not only for documents, but also for user
queries that intend to search for these documents. Since
there are no standard ways of spelling a word in a non-
native script, transliteration content almost always features
extensive spelling variations; typically a native term can be
transliterated into Roman script in very many ways [1, 11].
For example, the word pahala (“first” in Hindi and many
other Indian languages) can be written in Roman script
as pahalaa, pehla, pahila, pehlaa, pehala, pehalaa, pahela,
pahlaa and so on.

This phenomenon presents a non-trivial term matching
problem for search engines to match the native-script or
Roman-transliterated query with the documents in multi-
ple scripts taking into account the spelling variations. The
problem of MSIR, although prevalent in Web search for users
of many languages around the world, has received very lit-
tle attention till date. There have been several studies on
spelling variation in queries and documents written in a sin-
gle (native) script [14, 34, 9] as well as transliteration of
named entities (NE) in IR [3, 31, 33]. However, as we shall
see in this paper, MSIR presents challenges that the current
approaches for solving mono-script spelling variation and
NE transliteration in IR are unable to address adequately,
especially because most of the transliterated queries (and
documents) belong to the long tail and hence do not have
enough clickthrough evidence to rely on.
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In this paper, for the first time, we formally introduce
the problem of MSIR and related research challenges. In
order to estimate the prevalence of transliterated queries,
we also analyse a large query log of Bing1 consisting of
13 billion queries issued from India. As many as 6% of
the unique queries have one or more Hindi words translit-
erated into Roman scripts, of which only 28% queries are
pure NEs (people, location and organization). On the other
hand, 27% of the queries belong to the entertainment do-
main (names of movies, song titles, parts of lyrics, dialogues,
etc.), which provide complex and ideal examples of translit-
erated queries. Hindi song music is also one of the most
searched items in India2 and thus, a perfect and practical
case for MSIR. This motivated us to conduct our MSIR stud-
ies on Hindi song lyrics.

We propose a principled solution to handle the mixed-
script term matching and spelling variation where the terms
across the scripts are modelled jointly. We model the mixed-
script features jointly in a deep-learning architecture in such
a way that they can be compared in a low-dimensional ab-
stract space. The proposed method can find the equivalents
of the query term across the scripts; the original query is
then expanded using the thus found equivalents. Through
rigorous experiments on MSIR for Hindi film lyrics, we fur-
ther establish that the proposed method achieves signifi-
cantly better results compared to all the competitive base-
lines with 12% increase in MRR and 29% increase in MAP
over the best performing baseline.

The concrete contributions of this paper are two-fold as
listed below:

1. The concept, formal definition and representative anal-
ysis of MSIR for Web search,

2. The mixed-script joint modelling technique using deep
autoencoder.

The rest of the paper is organized as follows. In Section 2,
we introduce the notion of MSIR formally and outline the
possible applications scenarios and research challenges. Sec-
tion 3 presents the empirical analysis of Bing search engine’s
query log, and the prevalence and distribution of transliter-
ated Hindi queries. Section 4 presents our deep-learning
based joint script modelling approach to MSIR. In Section 5
the experimental setup and results are presented along with
extensive empirical analysis. Finally, in Section 6 we present
the related work and we make the concluding remarks in
Section 7.

2. MSIR: DEFINITION & CHALLENGES
In this section, we formalize the notion ofMixed-Script In-

formation Retrieval along the lines of Crosslingual IR (CLIR).
We also list out a set of research challenges in the context
of MSIR.

2.1 Languages, Scripts and Transliteration
Let L be a set of (natural) languages {l1, l2, . . . , ln}. We

assume that every language is generally written using a par-
ticular script, which we will refer to as the native script of
the language. Let si be the native script for language li.
Thus, the set of scripts S = {s1, s2, . . . , sn} has a one-to-
one mapping to L.
1http://www.bing.com/
2Zeitgeist 2010: India - http://www.google.com/intl/en
/press/zeitgeist2010/regions/in.html

Any natural language word (or more generally any text
fragment) w has two attributes - the language it belongs
to and the script it is written in. We use the notation
w ∈ 〈li, sj〉 to imply that w is in language li, written us-
ing the script sj . When i = j, we say that w is in native
script. Else, we say that w is in transliterated form, where
transliteration can be defined as the process of loosely or in-
formally representing the sound of a word of one language,
li using a non-native script sj .

Note that a particular language might be traditionally
written in more than one script. For instance, Kurdish is
written using the Roman, Cyrillic and Arabic scripts. How-
ever, such cases are rare. On the other hand, it is very
common to use a script for writing several languages. For
instance, the Roman script (with slight variations or addi-
tions of diacritics) is used to write English, French, Ger-
man, Italian, Turkish and many other languages around the
world. Similarly, the Devanagari script is used for writing
Hindi, Sanskrit, Nepali and Marathi languages. Our defini-
tion does not preclude such a possibility, but we would like
to emphasize that it is useful to treat the same script differ-
ently when used for writing different languages because the
same sequence of letters might have different pronunciations
in different languages. Consequently, transliterating a word
of li (say Hindi) into the scripts sj (say, Roman script as
used in English orthography) and sk (say, Roman script as
used in French orthography) could yield very different re-
sults, even though the two scripts use almost an identical
alphabet.

2.2 Mixed-Script IR
Given a query q and a document pool D, the task of an

IR engine is to rank the documents in D such that the ones
relevant to q appear at the top of the ranked list. Depend-
ing on the language in which q and D are presented, one
can define two basic kinds of IR settings. Without loss of
generality, let us assume that q ∈ 〈l1, s1〉. In monolingual
IR, D = {d1, d2, . . . , dN} consists of only those documents
that are in the same language and script, i.e., for all k,
dk ∈ 〈l1, s1〉. This simple scenario is modified in the context
of CLIR, where

D =
⋃

i=1...n

Di

where Di = {di,1, di,2, . . . , di,N} are documents in language
li, i.e., for all k, di,k ∈ 〈li, si〉. Note that all the documents
in a typical CLIR setup are assumed to be written in the
corresponding native scripts.

Based on this fundamental idea of CLIR, we can define a
corresponding Mixed-script IR (MSIR) setup as follows. Let
q ∈ 〈l1, sj〉 be a query, where j may or may not be equal to
1. The document pool,

D =
⋃

k=1...n

D1,k

where D1,k = {d1,k,1, d1,k,2, . . . , d1,k,N} are documents in
language l1 written in script sk, i.e., for all m, d1,k,m ∈
〈l1, sk〉. In other words, in the MSIR setup, the query and
the documents are all in the same language, say l1, but they
are written in more than one different scripts. The task of
the IR engine is to search across the scripts.

In the literature, sometimes CLIR is distinguished from
Multilingual IR in the sense that the former refers to a case
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where n = 2, whereas the latter is a generalization to any
n > 2. Likewise, for monolingual IR, n can be assumed to
be 1. One could make a similar distinction between Mono-
script, Cross-Script and Mixed-Script IR scenarios, where
the query and the documents are in one language, but in 1,
2 or more than 2 scripts respectively. Nevertheless, we will
refer to both the latter cases as MSIR. All our experiments
involve a single language, namely Hindi, and two scripts
– Devanagari and the Roman script (English orthography),
but the proposed approach can be easily extended to a larger
set of scripts.

One can also further generalize the setup to Mixed-script
Multilingual IR, where q as well as D can be in one of the
several languages written in one of the several scripts. This
is also a useful and practical setup, though we will not dis-
cuss it any further in this work.

It should also be noted that like CLIR it is possible in the
MSIR setting that for q ∈ {li, sj}, the information might be
available only in a di,j,k where i 6= j. In such cases, often
the user issuing the query might be able to read and write
both sj and sj and hence di,j,k would have solved users info
need. However, without MSIR this would not be possible to
achieve.

2.3 Mixed and Transliterated Queries & Doc-
uments

The definition of MSIR setup assumes that the entire
query and the each of the documents are in a single lan-
guage and single script. However, in practice, one can find
queries or documents that contain text fragments written
in more than one language or script or both. Furthermore,
depending on whether the parts of a query or document are
written in a language using the native or a non-native script,
one can have native or transliterated queries/documents.

A practical way to address the issue of mixed documents
could be to split them into several sub-documents such that
each of the sub-documents are in a single language and single
script as discussed in [4] given mixing is not at sub-sentence
level which falls under different case of code-mixing and out
of the scope of this study. Mixed queries, however, cannot be
handled through simple splitting because matching parts of
a query to the documents does not make sense in the context
of IR. Therefore, we extend our MSIR setup to include mixed
queries. We define query q as a string of words w1w2 . . . wm,
where w1 ∈ 〈li1 , sj1〉, w2 ∈ 〈li2 , sj2〉 and so on can all belong
to different languages, or scripts or both.

2.4 Challenges in MSIR
The two primary challenges in MSIR are: (a) how to tackle

the extensive spelling variations in the transliterated queries
and documents during the term matching phase, and (b)
how to identify, process and represent a mixed query (and
also, the mixed and transliterated documents). In CLIR,
there are broadly two approaches to model the crosslin-
gual space – either documents and queries are translated to
bring all words into the same monolingual space, after which
monolingual IR techniques and matching algorithms can be
directly applied [33], or the crosslingual space is modelled
jointly as an abstract topic or semantic space, and docu-
ments and queries in all languages are mapped to this com-
mon space [5]. Likewise, in MSIR one can“transliterate” the
text to bring everything into a common space and then apply
standard matching techniques in the single-script space, or

one can jointly model an abstract orthographic space for rep-
resenting the words written in different scripts. In this work,
we shall explore the latter, which we believe is a more robust
and generic solution to the mixed-script space modelling
problem as it can simultaneously handle spelling variations
in a single script and across multiple scripts. Nevertheless,
we do recognize that the transliteration based approach is
worth exploring, and machine transliteration, though a well
studied problem [19], could present interesting and challeng-
ing research problems when applied in the context of Web
scale IR.

Mixed query processing is another interesting research
challenge, which includes language identification of the query
words, which can be either in native or transliterated scripts,
and labeling those with semantic or other tags (e.g., entities,
attributes). This is challenging especially because depend-
ing on the context of the query, the same word, say “man”,
could represent the English word man, or a transliterated
Hindi word man meaning “mind”, or another transliterated
Hindi word maan meaning “reputation”. However, the same
word with similar meanings are also used in many other In-
dian languages; and it can also have different connotations
in other languages (e.g., in Bengali this could also mean “to
get offended”). Hence, language identification seems to be
an extremely challenging problem in the MSIR setting, espe-
cially when multiple languages are involved. In this work, we
limit our experiments to only two languages, namely English
and Hindi, and describe some initial results with language
identification for transliterated and mixed queries.

Apart from these basic challenges, result presentation in
MSIR is also an interesting problem because this requires
the information on whether the user can read all the scripts,
or prefer some scripts over other. There are no user stud-
ies related to MSIR and it is ripe with several such open
problems.

3. TRANSLITERATED QUERIES IN WEB

SEARCH
Although the current Web search engines do not support

MSIR, they still have to handle a large traffic of mixed and
transliterated queries from linguistic regions that use non-
Roman indigenous scripts. We are not aware of any previ-
ous study on percentage of transliterated queries seen by the
commercial search engines. Consequently, we do not know
the distribution of transliterated queries across various top-
ics and domains, which could provide deeper understanding
of the MSIR space and its users. In this section, we present
an analysis of mixed and transliterated queries extracted
from a large query log of Bing. Our study relies on auto-
matic identification and classification techniques for mixed
queries that have been developed specifically for this analy-
sis.

3.1 Methodology
We conducted the analysis on 13.78 billion queries sam-

pled from the logs of Bing that were issued from India. India
provides an interesting socio-linguistic context for studying
mixed queries because of abundance of Roman translitera-
tion and multiplicity of languages and scripts. This dataset
consists of 30 million unique queries with an average length
of 4.32 words per query. Almost all the queries (99.998%)
are in Roman script. For ease of computation, we randomly
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sampled 1% (i.e., 300,000) of the unique queries and con-
ducted the study on this smaller sample.

We automatically identify the transliterated queries using
a language classifier, which has been built as follows. We
train a maximum entropy classifier using character n-grams
for n = 1 to 5 as features for both Hindi and English words,
which is based on a similar word-level language identifica-
tion work by King and Abney [18]. The classifier was trained
on 5000 frequent transliterated Hindi words from Bollywood
song lyrics [11]. This dataset is freely available for research
purpose. For English examples, we have taken 5000 frequent
words from the Leipzig Corpus3. We define a query q to be
mixed or transliterated if at least 40% of the words in q are
classified as Hindi. We tested the performance of the clas-
sifier on a set of 2500 unseen words and the accuracy was
found to be 97%. Note that the query log is expected to con-
tain transliterated queries in other Indian languages as well.
Due to a large shared vocabulary, lot of the Roman translit-
erated words in other Indic languages have almost similar
spellings as in Hindi, and hence, we observe that our classi-
fier is able to identify those as well. Nevertheless, our analy-
sis is targetted primarily on Hindi transliterated queries and
the actual fraction of transliterated queries, considering all
Indic languages, can be expected to be much higher than
the numbers revealed by this study.

After observing the transliterated queries pulled out by
our method, we identified six broad categories or topics to
which most of these queries belong: Named Entities, En-
tertainment, Information Source, Culture, Recipe and Re-
search. Each of these were further refined into a set of sub-
categories; e.g., Named Entities can be of three types people,
location and organization. Besides, we also observed a few
interesting subcategories, which we put together under a
catch-all seventh category – Others. Table 1 lists all these
categories and sub-categories along with example queries.

In order to automatically classify the queries into these
categories, we resort to a rather simple minimally supervised
approach. Through manual inspection of the transliterated
queries, we selected five representative and reasonably fre-
quent examples for each sub-category. We extract all queries
from our dataset that have at least one word in common
with at least one of the five representative queries, and then
we extract the top 100 most frequent words in this set of
queries. The standard English stop words are then removed
from these 100 words; we shall refer to the remaining words
as the cue words for the particular subcategory. In this way,
we obtain the cue words for each sub-category with very few
overlaps, giving us a total of 180 such words. Some exam-
ple cue words for each of the sub-categories are reported in
Table 1.

Let cj
1
to cjmj

be the cue words associated with the jth

sub-category. For each of the transliterated queries q =
w1w2 . . . wm that we want to categorize, we remove all the
stop words and cue words. For each of the remaining words
in the query, say wi, we count the number of queries, f j

i,k,

in the log where wi co-occurs with the cue-word cjk. Also,
let fi be the number of queries in which wi occurs. We
compute the score of q with respect to a sub-category j as
(if wi is a stop or cue word then it is not considered for score
computation):

3http://corpora.uni-leipzig.de/

score(q, j) =

k∑

i=1

mj∑

k=1

f j

i,k/fi

q is assigned to the sub-category j∗ for which this score is
maximum.

3.2 Observations
In our dataset, as much as 6% of the unique queries were

identified as transliterated, which means that at least 40%
of the words in these queries are Roman transliterations of
Hindi words. The average query length for the transliterated
queries is 2.86, which is less than the average query length of
all queries, 4.32. The frequency of the transliterated queries
are in general less than that of the non-transliterated ones.
Hence, they only constitute about 0.011% of all the queries
in our dataset. However, their frequency distribution fol-
lows the same power-law pattern as the regular queries, al-
beit spanning mainly the medium and low frequency spectra.
This also implies that a large number of transliterated and
mixed queries belong to the long tail of distribution and may
not have enough clickthrough data to help a search engine
process them accurately. They must be processed differently
recognizing the fact that they are rare, but together they do
form a sizeable mass of the search traffic.

Table 1 reports the percentage of the transliterated queries
in each of the identified sub-categories. The numbers do not
add to 100% because a small fraction, 18% of unique but
only 2% of all, queries could not be mapped to any of the
categories. It is not surprising that a large fraction of the
queries are NEs. Along with Websites, NEs form 50% of the
unique queries, though when query frequencies are taken
into account NEs only constitute 6% of all queries. Conse-
quently, processing of transliterated NEs has received some
attention from the IR researchers [21]. Entertainment is the
second largest category (27%), of which movies and songs
are the most searched categories. These queries are typically
longer and more complex than NE queries, and constitutes
more than 32% of the transliterated query traffic. Yet, this
category has hardly received any special attention from the
researchers [6, 11]. We believe that Entertainment is a rich
and practically important domain for MSIR, and hence we
conduct our MSIR experiments on Hindi song lyrics dataset
obtained from [11].

4. DEEP-LEARNING OF TERM EQUIVA-

LENTS
Having defined the basic MSIR setting, and establishing

its prevalence in Web search, we now present an approach
for modelling the mixed-script space that in turn allows us
to develop a MSIR system.

4.1 Motivation
As discussed in Sec 2, the primary challenge in MSIR is

to model and match the words across the scripts in the pres-
ence of a large number of spelling variations of the words,
especially in the non-native script. We shall refer to the
variants of the same word in the native and other scripts
as term equivalents. The term matching problem could be
addressed by using existing approaches such as approxi-
mate string matching [14, 34] and transliteration mining [30,
21, 20]. The former techniques can be used to handle the
spelling variation in a single script (especially, variations in
non-native script), while the latter can help in matching the
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Table 1: Classification of transliterated Hindi queries. In the last column, we present the % of unique queries
in each category followed by the % of total queries within parentheses. Transliterated words are italicized.

Category Topics/sub-categories Cue words Example query % of queries

Named Entity People mr, ji, guru, dr, swami harmohinder singh gogia 6 (1.04)
Organization ltd, university, bank gandharva mahavidyalaya ddu marg 14 (2.8)
Location nagar, garh, chowk, hotel rajdhani train timings chappra

to guwhati

8 (2.13)

EntertainmentMovie movie, film, torrent, video himmatwaala remake 7 (19.56)
Song/Lyrics/Dialogues album, tune, lyrics, audio ik din ayega lyrics 18 (12.8)
Tv soaps/serials song, lyrics, tv, serial colors madhubala ishq ek junoon 2 (0.62)

Information Books book, pustak, kitab bade ghar ki beti premchand 0.005 (0.02)
Source magazines/news patrika, times, vasundhara eenadu 3 (14.52)

websites blog, com, net , http swayamvaram info 22 (44.18)
Culture Religion festival, god, lord ahoi ashtami 2011 0.4 (0.02)

Art/Literature yoga, natyam, raaga bharatanaytam dance kalakshetra 0.3 (0.01)
Astrology rashi, horoscope, kundali ashwini nakshatra mesha raashi 0.3 (0.2)
Attire saree, sherwani, lehenga silk bandhni chaniya choli 0.3 (0.04)

Recipe Recipe/Dish/Food curry, biryani, paneer matar panir by tarala dalal 1.2 (0.16)
Research Economic/Agriculture, etc. arthik, samaj vishwa arthik mandi mein bharat 0.04 (0.01)
Others - meaning vibhaa meaning 0.01 (0.01)

terms across the scripts. However, these methods cannot be
directly applied to solve the term matching problem for a
single as well as across multiple scripts at the same time.

Therefore, we propose a framework in which the terms
across the scripts are modelled jointly. We achieve this by
learning a low-dimensional representation of terms in a com-
mon abstract space where term equivalents are close to each
other. The core of our approach lies in learning such abstract
representation. The concept of common abstract space for
mixed-script modelling is based on the fundamental obser-
vation that words are transliterated into a non-native script
in such a way that the sound or pronunciation is preserved.

4.2 Formulation
We treat the phonemes as character-level “topics” in the

terms. There are some attempts on developing topic models
using undirected graphical models like restricted Boltzmann
machines (RBMs) [10, 27, 28]. The topic models are usually
based on the assumption that each document is represented
as a mixture of topics, where each topic defines a probability
distribution over words. Similarly, we consider the terms
to be represented as mixture of “topics”, where each topic
defines a probability distribution over character n-grams.

Phonemes of the language can be captured by the charac-
ter n-grams. Consider the feature set F = {f1, . . . , fK} con-
taining character grams of scripts si for all i ∈ {1, ., r} and
|F| = K. Let t1 =

⋃
i=1...r

w1,i be a datum from training
data T of language l1 where w1,i represents word w written
in language l1 and script si where r is the number of scripts
being modelled jointly. The datum can be represented as
K-dimensional feature vector x where xk is the count of kth

feature fk ∈ F in datum t1. We observe that count data of
character grams within terms follow Dirichlet-multinomial
distribution. Consider N independent draws from a cate-
gorical distribution with K categories . In the present con-
text, N =

∑K

i xi and {f1, . . . , fK} are K categories, where
the number of times a particular feature fk occurs in the
datum t1 is denoted as xk. Then x = (x1, . . . , xK) follows a
multinomial distribution with parameters N and p, where
p = (p1, . . . , pK) and pk is the probability that kth feature
takes value xk. The parameter p in our case is not directly
available hence, we give it a conjugate prior distribution.

Therefore, it is drawn from a Dirichlet distribution with pa-
rameter vector α = (α1, . . . , αK). The hyperprior vector α

can be seen as pseudocounts (i.e., counts of each feature ob-
served in reference collection) and αk = xk∑

K
i=1

xi
in reference

collection. Such formulation can be expressed as follows:

α = (α1, . . . , αk) = hyperprior
p|α = (p1, . . . , pK) ∼ Dir(K,α)
x|p = (x1, . . . , xK) ∼ Mult(K,p)

The proposed model is based on the non-linear dimen-
sionality reduction methods like deep autoencoder [15]. The
RBMs are stacked on top of each other to constitute a deep
architecture. The bottom-most RBM of our model, which
models the input terms, is character-level variant of the
replicated softmax (RSM) model presented in [28] for docu-
ments. Despite character n-grams follow Dirichlet-multinomial
distribution, we can model them under RSM because dur-
ing the inference using methods like Gibbs sampling, Dirich-
let prior distributions are often marginalised out. Let v ∈
{0, 1, · · · , N}K represent visible multinomial units and let
h ∈ {0, 1}m be stochastic binary hidden latent units. Let
v be K-dimensional input vector such as feature vector x
for datum t1, h be m-dimensional latent feature vector and
N =

∑K

i=1
xi. The energy of the state {v,h} is defined as:

E(v,h) = −
K∑

i=1

viai −N
m∑

j=1

bjhj −
∑

i,j

W i
jhjv

i (1)

where, vi is the count data xi, W
i
j is the weight matrix entry

between ith visible node and jth hidden node, while ai and bj
are bias terms of visible and hidden layers respectively. The
conditional distributions are given by softmax and logistic
functions as below,

p(vi = xi|h) =
exp(ai +

∑
j
hjW

i
j )

∑K

i=1
exp(ai +

∑
j
hjW i

j )
(2)

p(hj = 1|v) = σ(bj +N

K∑

i=1

viW
i
j ) (3)

As argued in [27], a single layer of binary features may
not be the best way to capture complex structure in the
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count data, more layers are added to create a deep autoen-
coder [15]. The further binary RBM’s are stacked on top of
each other in such a way that output of the bottom RBM
is the input to the above RBM. The conditional distribu-
tions of these binary RBMs are given by logistic functions
as below,

p(vi = 1|h) = σ(ai +
∑

j

hjW
i
j ) (4)

p(hj = 1|v) = σ(bj +
∑

i

viW i
j ) (5)

4.3 Closed Feature Set - Finite K

The topic models for documents are usually trained over a
subset of vocabulary (top-n terms) and hence, they have to
deal with the non-trivial problem of marginalising over un-
observed terms. On the contrary, the term level topic model,
proposed in this work, is immune to this problem because
the size of phonemes (captured by the character n-grams)
for a language is finite and fairly small (only for languages
with finite set of alphabets e.g. English with alphabets a-z).
Hence, enough evidence for all the phonemes is found even
in a small to moderate size training data, which increases
the suitability of our approach to the problem.

For example, without loss of generality consider the to-
tal number of scripts in datum being modelled r = 2 for
language Hindi where s1 be the Devanagari script with 50
letters and s2 be the Roman script (as used in English or-
thography) with 26 letters. Then, the size of the feature
set F , considering character uni/bi-gram features, is upper
bounded by K = 3252 (=26 + 262 + 50 + 502).

4.4 Training
The architecture of the autoencoder is shown Fig. 1 (a).

The visible layer of the bottom-most RBM is character level
replicated softmax layer as described in Section 4.2. The
character uni and bi grams of the training datum (r = 2)
constitute the feature space F . The hidden layer of the
top-most RBM is linear which represents the terms as low-
dimensional embedding in the abstract space. The autoen-
coder is trained in two phases: i) greedy layer-wise pre-
training and; ii) fine-tuning through backpropagation. Dur-
ing pre-training, each RBM is trained using contrastive di-
vergence (CD1) learning for 50 epoch where CD1 refers to
CD with 1 step of alternating Gibbs sampling [16]. Once
the network is pre-trained, the autoencoder is unrolled as
shown in Fig. 1 (b) and the cross-entropy error between the
input and its reconstruction (output) is backpropagated to
adjust the weights of the entire network.

As shown in Fig. 1 (a), the autoencoder is trained with
native form and its transliterated form together. In this way,
the model is able to learn character level “topic”distribution
over the features of both scripts jointly.

4.5 Finding Equivalents
Once the model is trained, equivalents discovery involves

two steps: i) preparing the index of mining lexicon in ab-
stract space (offline) and; ii) finding equivalents for the
query term (online). The lexicon of the reference collection
(ideally mixed-script) which is used to find term equivalents
is referred as mining lexicon with size n. The former step is a
one-time offline process in which the m-dimensional abstract
representation for each term in mining lexicon is obtained as

shown in Fig. 1 (c) (x1×K → h1×m). These representations
are stored in index against each term. This index can be
seen as an n × m matrix H where h ∈ H. While the lat-
ter step involves projecting the query term into the abstract
space (xq → hq) and calculating the similarity with all the
terms in the index. It can be seen as a matrix multiplica-
tion operation HhT

q considering the similarity function to
be cosine. All the terms with sim(h,hq) > θ,h ∈ H are
considered as equivalents of the query word wq where θ is
similarity threshold.

5. EXPERIMENTS AND RESULTS
Now we describe the experimental set up for evaluating

the effectiveness of the proposed method for retrieval in
Mixed-Script space.

5.1 Dataset
We used the FIRE 2013 shared task collection on Translit-

erated Search [26] for experiments and training. The dataset
comprises of document collection, queryset (Q) and rele-
vance judgments. The collection (D1) contains 62,888 doc-
uments containing song title and lyrics in Roman, Devana-
gari and mixed scripts. Statistics of the document collection
is given in Table 2 (a). The Q contains 25 lyrics search
queries for Bollywood songs in Roman script with mean
query length of 4.5 words. Table 2 (b) lists a few exam-
ples of queries from Q.

Table 2: Details of the Dataset.

(a) Corpus Statistics

No. of
Documents 62,888
Tokens 12,738,191
Vocabulary 135,243

(b) Example of Queries

Sample Queries
tumse milke aisa laga

wah tera kya kehna

zindagi ke safar mein

5.2 Experimental Setup
The experimental setup is a standard adhoc retrieval set-

ting.The document collection is first indexed to create an in-
verted index and the index lexicon is used as mining lexicon.
Being this a lyrics retrieval set up, the sequential informa-
tion among the terms is crucial for effectiveness evaluation,
e.g. “love me baby” and “baby love me” are completely differ-
ent songs. In order to capture the word-ordering we consider
word 2-grams as a unit for indexing and retrieval.

The non-trivial part of mixed-script IR is query-enrichment
to handle the challenges described in Sec. 2. In order to en-
rich the query with equivalents, we find the equivalents of
the query terms as described in Section 4.5 and the word
2-gram query is formulated as shown in [13].

5.3 Baseline Systems
We consider a variety of systems to be compared with

the proposed method. The query formulation is similar for
all the systems including the retrieval settings like inverted
index, retrieval model and mining lexicon except the method
of finding the equivalents.

1. Naı̈ve: The original query terms are used for the query
formulation without any query-enrichment step.

2. Naı̈ve + Trans: The original query terms and their
automatic back-transliteration obtained from a com-
mercial transliteration engine4 are used for query for-
mulation.

4Yahoo! Transliteration: http://transliteration.yahoo.com/
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Figure 1: The architecture of the autoencoder (K-500-250-m) during (a) pre-training and (b) fine-tuning.
Post training, the abstract level representation of the given terms can be obtained as shown in (c).

3. LSI: In this system linear dimensionality reduction tech-
nique, latent semantic indexing (LSI) [5] is used to
learn the low-dimensional embedding of the terms across
the script. Consider matrix An×K where aij is the
count data of jth feature fj ∈ F in ith training word-
pair. Such matrix A is factored using LSI to learn
projection matrix (VK×m) such that hq = xqV . The
equivalents of the query term t are obtained from 50-
dimensional abstract space as described in Section 4.5.
Thus found equivalents along with original query terms
are used for query formulation. It can find equivalents
across the scripts.

4. Editex: An approximate string matching algorithm
for IR proposed in [34] is used to get equivalents of
the query term. Editex uses advanced Phonix and
Soundex information to normalise the pronunciation
differences. The distance between such normalised strings
is calculated as edit distance. Editex can handle strings
only in Roman alphabet. Therefore, only Roman script
equivalents of the query terms are found using Editex.

5. CCA: The problem of finding equWe ivalents is formu-
lated as searching across the views by learning hashing
functions as presented in [20]. The problem of learning
hash functions is formulated as a constrained minimi-
sation problem over the training data objects. The
training terms are represented as character bi-gram
features and the learning tries to minimize the distance
between similar terms in a common geometric space.
In the absence of the affinity matrix (i.e., no prior infor-
mation about similarity between objects is available)
the learning of hash functions becomes a generalized
eigenvalue formulation of canonical correlation analy-
sis (CCA). An inverted index of hashcodes is prepared
for terms in mining lexicon. The equivalents for the
query term are found from this index according to the
score given by the graph matching algorithm (accord-
ing to the cosine similarity in the common geometric
space) of [30].

5.4 Results and Analysis
We evaluate the effectiveness of the proposed method,

referred as Deep and compare it with all the baseline sys-
tems. The retrieval performance is measured in terms of
mean average precision (MAP) and mean reciprocal rank
(MRR) evaluation measures. For each query we evaluated
the ranklist composed of top 10 documents. The ranking
model is parameter free divergence from randomness (un-

supervised DFR) as described in [2] which is shown to be
suitable for short queries. The results averaged over Q are
presented in Table 3. For Deep, the dimensionality selection
was based on our previous experience as described in [12].
For LSI, we tried different dimensionalities in the range of
[50,200] with step size of 50 but did not observe any statis-
tical significant difference in performance. For CCA, we used
the implementation from the original authors optimised for
English and Hindi language pair. The code for Deep is made
publicly available5.

Table 3: The results of retrieval performance mea-
sured by MAP and MRR.

Method MRR MAP θ

Naı̈ve 0.6857 0.2910 NA
Naı̈ve+Trans 0.6590 0.3560 NA
LSI 0.7533 0.3522 0.92
Editex 0.7767 0.3788 NA
Editex+Trans 0.7433 0.4000 NA
CCA 0.7640 0.3891 0.997
Deep-Mono 0.8000 0.4153 0.96
Deep 0.8740 0.5039 0.96

The results in Table 3 are presented after the parameter
tuning of θ which is better explained later in this section.
High MRR score achieved by Deep describes its ability to
fetch the first relevant document at very high ranks, a de-
sirable quality for Web search in addition to better overall
ranking measured by MAP. Although Editex is devised for
English and able to operate only in the Roman script space,
it performs comparable to CCA and LSI. In order to make a
fair comparison, we report two more configurations: Deep-

Mono which considers only Roman script equivalents and
Editex+Trans in which automatic transliteration of terms
are added to enrich Editex. The results clearly outline
the superiority of our method for query enrichment. When
compared with linear methods such as PCA and CCA which
have linear objective functions, the strong performance of
Deep suggests that objective function for modelling terms
in mixed-script space is actually non-linear and not convex.
Because of space constraints, we have left for future work
the detailed analysis and comparison of features captured
by autoencoder at their different layers. A statistical com-
parison of methods is presented in Table 4. There is no

5http://www.dsic.upv.es/~pgupta/mixed-script-ir.
html
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Table 4: The performance comparison of systems presented as x/y where x denotes % increase in MAP and
y denotes p-value according to paired significance T-Test.

N+T LSI Editex CCA Editex+T Deep

Naı̈ve 22.5%/0.09 21%/0.12 30.1%/0.03 33.7%/0.06 37.45%/0.047 73.1%/0.0006
Naı̈ve+Trans - -0.01%/0.47 6.2%/0.34 9.1%/0.27 12.2%/0.19 41.3%/0.009
LSI - - 7.5%/0.24 10.5%/0.22 13.57%/0.12 43.1%/0.0004
Editex - - - 2.7%/0.42 5.6%/0.28 33.0%/0.002
CCA - - - - 2.8%/0.391 29.5%/0.007
Editex+Trans - - - - - 26.0%/0.009

significant difference in performance of Naı̈ve+Trans, LSI,

Editex and CCA while Deep significantly outperforms all the
baselines, as shown with dark-gray b/g, which clearly shows
that term equivalents found by Deep are better than the
other methods.

Figure 2: Number of equivalents found in abstract
space at similarity threshold (θ) (c.f. Section 4.5).

We present an analysis on the impact of θ on number of
equivalents, which is directly related to the query latency.
Fig. 2 depicts the average number of equivalents for each
query term wrt corresponding θ. As can be noticed in Fig. 2,
CCA shows a steep increase in number of equivalents which
shows, CCA has very dense population in the abstract space
and therefore, has around ∼40 equivalents even at a strict
threshold of 0.99. Rather Deep and LSI show a moderate
increase in the number of equivalents wrt θ value.

Figure 3: Impact of similarity threshold (θ) on re-
trieval performance. CCA∗ follows the ceiling X-axis
range [0.999-0.99].

We also show how the θ affects the retrieval performance
in Fig. 3. The parameter sweep for θ is [0.99-0.90] with
step of 0.01. Deep exhibits the best performance throughout

the tuning range. For CCA we also considered θ between
[0.999-0.99] with step size of 0.001 to better capture its peak
performance as shown in Fig. 3 with CCA∗.

Figure 4: Snippet of mining lexicon projected in
abstract space using Deep.

Finally we show the power of Deep for finding equivalents
by showing a snippet of 20D abstract space as 2D-view in
Fig. 4. It can be noticed that mixed-script equivalents of the
terms are very close to each other in small clusters and such
clusters are well separated from each other. The 2D repre-
sentation is achieved using the t-SNE algorithm6. We show
equivalents of a few terms found using Deep with θ=0.96 in
Table 5. The category “not sure” depicts the cases where
the terms are quite close to the desired term but not cor-
rect may be due to a typo e.g. ehaas vs. ehsaas where the
former is not a valid Hindi word.

Table 5: Examples of the variants extracted using
Deep with similarity threshold 0.96 (words beginning
with ! and ? mean “wrong” and “not sure” respec-
tively).

Term Variants

ehsaas ehsas, ehasas, ehsaass, ehsAs, ehasaas,
?ehaas, ehsaaas

mujhe muhjhe, !mujhme, ?mujhea, m� J�, !mujheme,

mujhee, muhje, muujhe, !m� Jm�\
bawra bawara, baawra, bavra, !brvA, bawaraa,

baawara, baavra, bAvrA, barava, !EbrvA
pe p�, !pr�, pee, !Up�, ?pe

5.5 Scalability
Among the two steps involved in finding equivalents listed

in Sec. 4.5, the indexing step, being one-time and offline, is
not a major concern. But the real time similarity estima-
tion during the online step while searching for equivalents
is very crucial for timely retrieval. As the similarity estima-
tion step is essentially a matrix multiplication operation, it

6http://homepage.tudelft.nl/19j49/t-SNE.html
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can be easily parallelised using multi-core CPUs or GPUs.
In our case the size of mining lexicon n=135,243 and ab-
stract space dimensionality m=20. Using a multi-threading
framework for matrix multiplication under normal CPU load
it takes on an average 0.238 Seconds7 for the step (ii) to find
equivalents for each query word. The time-taken is directly
proportional to the mining lexicon size n, dimensionality m
and the number of CPU/GPU cores.

6. RELATED WORK
Although MSIR has attained very little attention explic-

itly, many tangentially related problems like CLIR and translit-
eration for IR do discuss some of the issues of MSIR. While
languages like Chinese and Japanese use multiple scripts [24],
they may not illustrate the true complexity of the MSIR sce-
nario envisaged here because there are standard rules and
preferences for script usage and well defined spellings rules.
In Roman transliteration of Hindi, for example, there are no
standard rules leading to a large number of variations. Fur-
thermore, these texts are often mixed with English, which
makes detection of transliterated text quite difficult.

CLIR typically involve translating queries from one lan-
guage to another. However, it is often a reasonable choice to
transliterate certain OOV words, especially the Named En-
tities (NEs). While NEs have been worked on extensively in
IR and CLIR, transliterated queries where the text, in addi-
tion to NE, is represented in the script of another language,
typically English, have not received adequate attention. In
an analysis of the query logs for Greek web users, Efthimi-
adis et al. [8] has shown that 90 percent of the queries are
formulated using the Roman alphabet while only 8% use
the Greek alphabet, and the reason for this [7] is that 1 in
3 Greek navigational queries fail due to the low level of in-
dexing by the search engines of the Greek Web. Want et
al. [32] employ a translation based method to classify non-
English based queries using an English taxonomy system.
Though their method shows some promise, it is heavily de-
pendent on the availability of translation systems for the
language pairs in question. Ahmed et al. [1] show that the
problem of transliteration is compounded by the fact that
due to a lack of standardization in the way a local language
is mapped to the Roman script, there is a large variation in
spellings. In their work on query-suggestion for a Bollywood
Song Search system [6] also stress on the presence of valid
variations in spelling Hindi words in Roman script. Related
work by [11] goes into the details of handling these variations
while mining transliterated pairs from Bollywood song lyric
data crawled from the Web. Edit-distance based approaches
have also been popular for the generation of such pairs ([29]
for English-Telugu, [17] for Tamil-English, for example). [23]
propose a method for normalization of transliterated text
that combines two techniques: a stemmer based method that
deletes commonly used suffixes [22] with rules for mapping
variants to a single canonical form. A similar method that
uses both stemming and grapheme-to-phoneme conversion is
used by [25] to develop a proof-of-concept for a multilingual
search engine for 10 Indian languages. Thus, though there
has been some interest in the past especially with respect to
handling variation and normalization of transliterated text,
on the whole the challenge of IR in the mixed-script space is
largely neglected.

7We used Intel Xeon CPU E5520 @ 2.27GHz with 4 cores,
8 processors and 12GiB memory.

For languages like Japanese, Chinese, Arabic and most In-
dian languages, the challenge of text input in native script
means that there is a proliferation of transliterated docu-
ments on the web. While the availability of more sophisti-
cated and user-friendly input methods with time has helped
resolve this for some of these languages (for example Japanese
and Chinese), there is still a large number of languages for
which the English keyboard and hence the Roman script
remains the main input medium. Further, as a number of
relevant documents are available in both the native script
and its transliterated form, it also becomes important to
deal with not only Crosslingual but Mixed-Script retrieval
for such languages. Social media is another domain where
the use of transliterated text is widespread. Here text nor-
malization is complicated further by the presence of SMS-
like contractions and interjections, and Code-mixing or the
switching between languages at phrase, word and morpho-
logical levels. As IR becomes more pervasive in social media,
dealing with the complexities of transliteration will become
more significant for a robust search engine.
7. CONCLUSION AND FUTURE WORK

Although a very important and prevalent problem, Mixed-
Script IR (MSIR) has attained very little attention. In this
study, the problem of MSIR is introduced formally along
with the involved research challenges. We also fill the void
of a quantitative analysis of how much Web search traffic
is actually affected by MSIR through a large-scale empirical
study of Bing query logs, and thereby outline the prevalence
and impact of the phenomenon.

A principled solution to address the primary challenge of
MSIR, the term variations across the scripts, is proposed.
The proposed mixed-script joint model learns abstract rep-
resentation of terms across the scripts through deep-learning
architecture such that term equivalents are close to each
other. The deep autoencoder based approach provides highly
discriminative and powerful representation for terms with as
low dimension as m=20. An extensive empirical analysis is
presented of experiments with a practical and important use-
case, adhoc retrieval of songs lyrics. Our experiments sug-
gest that the state-of-the-art methods for handling spelling
variation and transliteration mining have strong effect on
success of IR in Mixed-Script space but the proposed method
significantly outperforms them.

We lay the stepping stone to the larger goal of MSIR and
in future, one should also deal with the associated research
avenues such as code-mixing in queries and documents and
more general setup of MSIR such as Mixed-Script Multilin-
gual IR (MS-MLIR).
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